LESSON PLAN **DEPARTMENT: MATHEMATICS AND SCIENCE** BHUBANANANDA ORISSA SCHOOL OF ENGINEERING, CUTTACK ACADEMIC SESSION:-2021-22 SEMESTER: - 3RD SEM. WINTER-2021 **SUBJECT: - ENGINEERING MATHEMATICS-III** | Discipline:
ELECTRICAL
SEC B, | Semester: 3rd Semester | Name of the Teaching Faculty:
Dr. Bijayini Nayak | |-------------------------------------|---|---| | Subject: | No. of Days/ | Semester From: - Date: 01 / 10 / 2021 to | | Engineering
Mathematics- | per week class allotted
(Mon, Tue, Wed, Thu) | 08/ 01/2022 | | III | | No of Weeks: - 15 | | Week | Class days & Dates | Theory Topics | | 1 st | 1.10.21 | 1. Complex Numbers | | | | 1.1 Real and Imaginary numbers. | | | 4.10.21 | 1.2 Complex numbers, conjugate complex numbers, Modulus and Amplitude of a complex number. | | | 5.10.21 | 1.3 Geometrical Representation of Complex Numbers. | | | | 1.4 Properties of Complex Numbers. | | | | 1.5 Determination of three cube roots of unity and their properties. | | | | Solve problem on 1.1-1.5 | | 2nd | 25.10.21 | 1. Complex Numbers | | | 26.10.21 | 1.6 De Moivre's theorem | | | 27.10.21 | 1.7 Solve problems on 1·1 - 1·6 | | | 29.10.21 | 2.Matrices 2.1 Define rank of a matrix | | | | 2.2 Perform elementary row transformations to determine the rank of a matrix . | | | | 2.3 State Rouche's theorem for consistency of a system of linear equations in 'n' unknowns | | 3 rd | 01.11.21
02.11.21
03.11.21
05.11.21 | 2.4 Solve equations in three unknowns testing consistency. 2.5 Solve problems on 2.1 – 2.4 3. Linear Differential Equations | | | | 3.1. Define homogeneous and non – homogeneous Differential Equations with constant coefficients with examples. 3.2. Find general solution of linear equations in terms of C.F. and P.I. | | 4 th | 08.11.21
9.11.21
10.11.21
12.11.21 | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding \$\frac{1}{f(D)} x^n\$ Solve problems on 3.1- 3.3 3. Linear Differential Equations 3.4. Define partial differential equation (P.D.E) . 3.5 Form partial differential equations by eliminating arbitrary constants and arbitrary functions. 3.6 solve partial differential equations of the form P.p + Q .q = R Solve problems on 3.3- 3.6 | |-----------------|--|---| | 5 th | 15.11.21
16.11.21
17.11.21 | 4. Laplace Transforms . Laplace Transforms 4.1 Define Gamma function and Γ(n + 1) = n! and find Γ(1/2) = √π . 4.2 Define Laplace transform of a function f(t) and inverse Laplace transform 4.3 Derive L.T. of standard functions and explain existence conditions of L.T. 4.4 Solve problem on 4.1-4.3 4.5. Explain linear, shifting property of L.T. 4.6 Formulate L.T. of derivatives, integrals, multiplication by tⁿ and division by t. solve problem on 4.5 - 4.6 | | 6 th | 22.11.21
23.11.21
24.11.21
26.11.21 | 4. Laplace Transforms 4.7 Derive formulae of inverse L.T. and explain method of partial fractions solve problem on 4.1- 4.7 5. Fourier Series 5.1 Define periodic functions . 5.2 State Dirichlet's condition for the Fourier expansion of a function and it's convergence | | 7 th | | 5.3 Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series. | |------------------|--|--| | | 29.11.21
30.11.21
1.12.21
3.12.21 | 5.4 State Euler's formulae
5.5 Define Even and Odd functions and find
Fourier Series in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$ | | 8 th | 6.12.21 | 5.6 Obtain F.S of continuous functions and functions having points of discontinuity in $(0 \le x \le 2\pi \ and - \pi \le x \le \pi)$. | | | 7.12.21 | Solve problems on 5.1 – 5.6 | | | 8.12.21 | 6. Numerical Methods | | | 10.12.21 | 6.1 Appraise limitation of analytical methods of solution of algebraic equations . | | | | 6.2 Derive iterative formula for finding the solutions of algebraic Equations by | | | | (a) Bisection method | | 9 th | | (b) Newton- Raphson method | | | 13.12.21 | 6.3 solve problems on 6.1-6.2. | | | 14.12.21 | 7. Finite difference and interpolation | | | 15.21.21 | 7.1 Explain finite difference and form table of forward | | | 17.12.21 | and backward difference. | | 10 th | 20.12.21
21.12.21
22.12.21
24.12.21 | 7.2 Define shift Operator (E) and establish relation between E & difference operator (Δ). 7.3 Solve problems on 7.1-7.2 | | 11 th | 27.12.24 | 7. Finite difference and interpolation | | | 27.12.21 | 7.4 Derive Newton's forward and backward interpolation formula for equal intervals . | | | 28.12.21 | 7.5 state Lagrange's interpretation formula for unequal | | | 29.12.21 | intervals | | | 31.12.21 | 7.6 Solve problems on 7.3-7.4 | | 2.4.22 | 7. Finite difference and interpolation | |----------|---| | 3.1.22 | 7.7 Explain numerical integration and state | | 4.1.22 | 7.5.1 Newton's Cote's formula | | | 7.5.2 Trapezoidal rule | | 5.04.22 | 7.5.3 Simpson's 1/3 rd rule | | 07.01.22 | 7.8 Solve problems on 7.1-7.7 | | | | | | 5.01.22 | PRESCRIBED BOOK: ENGINEERING MATHEMATICS By B.S. GREWEL REFERENCE BOOK: ENGINEERING MATHEMATICS –III By SASMITA MALLICK ,CHITARANJAN MALLICK