

LESSON PLAN

DEPARTMENT: MATHEMATICS AND SCIENCE

BHUBANANANDA ORISSA SCHOOL OF ENGINEERING, CUTTACK

ACADEMIC SESSION:-2021-22

SEMESTER: - 3RD SEM. WINTER-2021

SUBJECT: - ENGINEERING MATHEMATICS-III

Discipline: ELECTRICAL SEC B,	Semester: 3rd Semester	Name of the Teaching Faculty: Dr. Bijayini Nayak
Subject:	No. of Days/	Semester From: - Date: 01 / 10 / 2021 to
Engineering Mathematics-	per week class allotted (Mon, Tue, Wed, Thu)	08/ 01/2022
III		No of Weeks: - 15
Week	Class days & Dates	Theory Topics
1 st	1.10.21	1. Complex Numbers
		1.1 Real and Imaginary numbers.
	4.10.21	1.2 Complex numbers, conjugate complex numbers, Modulus and Amplitude of a complex number.
	5.10.21	1.3 Geometrical Representation of Complex Numbers.
		1.4 Properties of Complex Numbers.
		1.5 Determination of three cube roots of unity and their properties.
		Solve problem on 1.1-1.5
2nd	25.10.21	1. Complex Numbers
	26.10.21	1.6 De Moivre's theorem
	27.10.21	1.7 Solve problems on 1·1 - 1·6
	29.10.21	2.Matrices 2.1 Define rank of a matrix
		2.2 Perform elementary row transformations to determine the rank of a matrix .
		2.3 State Rouche's theorem for consistency of a system of linear equations in 'n' unknowns
3 rd	01.11.21 02.11.21 03.11.21 05.11.21	 2.4 Solve equations in three unknowns testing consistency. 2.5 Solve problems on 2.1 – 2.4 3. Linear Differential Equations
		3.1. Define homogeneous and non – homogeneous Differential Equations with constant coefficients with examples. 3.2. Find general solution of linear equations in terms of C.F. and P.I.

4 th	08.11.21 9.11.21 10.11.21 12.11.21	 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding \$\frac{1}{f(D)} x^n\$ Solve problems on 3.1- 3.3 3. Linear Differential Equations 3.4. Define partial differential equation (P.D.E) . 3.5 Form partial differential equations by eliminating arbitrary constants and arbitrary functions. 3.6 solve partial differential equations of the form P.p + Q .q = R Solve problems on 3.3- 3.6
5 th	15.11.21 16.11.21 17.11.21	 4. Laplace Transforms . Laplace Transforms 4.1 Define Gamma function and Γ(n + 1) = n! and find Γ(1/2) = √π . 4.2 Define Laplace transform of a function f(t) and inverse Laplace transform 4.3 Derive L.T. of standard functions and explain existence conditions of L.T. 4.4 Solve problem on 4.1-4.3 4.5. Explain linear, shifting property of L.T. 4.6 Formulate L.T. of derivatives, integrals, multiplication by tⁿ and division by t. solve problem on 4.5 - 4.6
6 th	22.11.21 23.11.21 24.11.21 26.11.21	 4. Laplace Transforms 4.7 Derive formulae of inverse L.T. and explain method of partial fractions solve problem on 4.1- 4.7 5. Fourier Series 5.1 Define periodic functions . 5.2 State Dirichlet's condition for the Fourier expansion of a function and it's convergence

7 th		5.3 Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.
	29.11.21 30.11.21 1.12.21 3.12.21	5.4 State Euler's formulae 5.5 Define Even and Odd functions and find Fourier Series in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$
8 th	6.12.21	5.6 Obtain F.S of continuous functions and functions having points of discontinuity in $(0 \le x \le 2\pi \ and - \pi \le x \le \pi)$.
	7.12.21	Solve problems on 5.1 – 5.6
	8.12.21	6. Numerical Methods
	10.12.21	6.1 Appraise limitation of analytical methods of solution of algebraic equations .
		6.2 Derive iterative formula for finding the solutions of algebraic Equations by
		(a) Bisection method
9 th		(b) Newton- Raphson method
	13.12.21	6.3 solve problems on 6.1-6.2.
	14.12.21	7. Finite difference and interpolation
	15.21.21	7.1 Explain finite difference and form table of forward
	17.12.21	and backward difference.
10 th	20.12.21 21.12.21 22.12.21 24.12.21	 7.2 Define shift Operator (E) and establish relation between E & difference operator (Δ). 7.3 Solve problems on 7.1-7.2
11 th	27.12.24	7. Finite difference and interpolation
	27.12.21	7.4 Derive Newton's forward and backward interpolation formula for equal intervals .
	28.12.21	7.5 state Lagrange's interpretation formula for unequal
	29.12.21	intervals
	31.12.21	7.6 Solve problems on 7.3-7.4

2.4.22	7. Finite difference and interpolation
3.1.22	7.7 Explain numerical integration and state
4.1.22	7.5.1 Newton's Cote's formula
	7.5.2 Trapezoidal rule
5.04.22	7.5.3 Simpson's 1/3 rd rule
07.01.22	7.8 Solve problems on 7.1-7.7
	5.01.22

PRESCRIBED BOOK: ENGINEERING MATHEMATICS

By B.S. GREWEL

REFERENCE BOOK: ENGINEERING MATHEMATICS –III

By SASMITA MALLICK ,CHITARANJAN MALLICK